
The Distributed Clearance Project:
A Case Study in Distributed Computing

James E. Ries1,2,3, M.S.
Gordon K. Springer1, Ph.D.

1Department of Computer Engineering and Computer Science

2Department of Health Management and Informatics
University of Missouri
Columbia, MO 65211

3Engineering Animations, Inc.
1000 W. Nifong Blvd. Bldg. 1

Columbia, MO 65203

ABSTRACT
Distributed computing promises to break through
computational performance barriers by cutting large
problems into small pieces which can be solved by many
machines acting in concert. However, not all problems are
good candidates for this sort of "divide and conquer"
strategy. Even large, compute-intensive problems that
appear easily divisible on the surface may have
dependencies on data and dependencies across partitioned
units of work that may prove to negate the advantages
associated with distributing the workload.

The Distributed Clearance Project demonstrates both the
potential and the pitfalls of distributed computing. The
project seeks to take a very computationally intensive task
(calculating part clearance tolerances in large
manufacturing models) and break it into jobs which can be
performed independently by diverse and geographically
remote computing resources. The project relies on
Distributed Computing Environment (DCE) standard
Remote Procedure Calls (RPC) as a platform-independent
transport mechanism, allowing a heterogeneous mix of
computers to participate.

Though the atomic transactions (part clearance
calculations) that form the basis for the Distributed
Clearance Project are essentially independent of each
other, some of the existing non-distributed code on which
the project is based contains assumptions regarding
relationships among these transactions. Since the project
was undertaken with a goal of reusing existing non-
distributed code, it was not until initial evaluation of the
project that these hidden dependencies became apparent.
In fact, the assumptions made in the non-distributed code
significantly degrade performance of the distributed
solution.

This paper compares the performance of a non-distributed
solution with the performance of the Distributed Clearance
Project. We discuss the hidden assumptions which affect
the Distributed Clearance Project and changes that are
being made to improve the partitioning of the problem
space so more nearly optimal distributed performance can
be achieved. We also point out "lessons learned" in

building distributed solutions from existing non-
distributed code.

Keywords: Distributed Computing, Load Balancing,
Transactions, Performance, Partitioning.

INTRODUCTION
Many scientific papers which address load balancing or
distributed computing in general assume that the domain
of such problems is really supercomputing or high-end
cluster computing. This assumption is rapidly becoming
erroneous. Distributed computing is moving from high-
end (and high cost) computing into the mainstream.
Distributed computing is now being employed in industry
to make computationally intensive problems not only
tractable, but also economically feasible. We call
distributed computing that operates using standard
workstations, networks, and operating systems,
"commodity" distributed computing.

The Distributed Clearance Project is an effort by
Engineering Animations, Inc. (EAI; see www.eai.com) to
take an existing processor-intensive task, break it into
independent sub-tasks, and distribute these sub-tasks
across a generic local area network to a group of
heterogeneous computers. EAI's products support a
variety of Unix flavors as well as Microsoft operating
systems on the Intel platform. Like most commercial
projects, part of the initial goal was to make use of as
much existing code as possible.

The project was somewhat inspired by the success of the
SETI @ Home project [1]. As we designed the
Distributed Clearance Project, it became apparent that our
project had some essential features in common with SETI
@ Home that made it a good candidate for a similar sort of
gross strategy in distributing units of work. SETI works
because the units of work performed by each of the
servers are quite time-intensive. This characteristic is
critical in commodity distributed computing because the
time to make a call or perform a transaction can be
relatively high as compared to Message Passing Interface
(MPI) or other schemes typically employed in high
performance distributed computing environments. In the

case of SETI, units of work typically take many hours or
even days to complete, so the time needed to communicate
between the client and server is largely irrelevant. As we
will show, communication time is somewhat relevant for
the Distributed Clearance Project.

Another important aspect of SETI is the independence of
each unit of work. For SETI, each unit of work is
completely independent of all others. Again, this is only
partially true for Distributed Clearance.

THE PROBLEM
Many of EAI's software products deal with large
manufacturing data models. For example, a typical
customer might be using EAI products to analyze the
design of a motor vehicle. One type of analysis that is
frequently of interest is interference and clearance. This
analysis reports parts of a model that overlap or penetrate
each other (interference) and/or parts that are closer to
each other than a given tolerance (clearance).

The interference/clearance calculations must be performed
many times throughout the manufacturer's design process
as changes occur in specifications, part designs, module
designs, etc. In large models, these calculations can be
extremely time-consuming. Since each part must be
"cleared" against every other in the model, approximately
n2-n calculations may be performed (the -n term comes
from the diagonal of a matrix since it is plainly
unnecessary to clear a part against itself).

The individual clearance tests are normally performed on
"tessellated" renditions of the parts using computational
geometry methods. A tessellation is a transformation
which represents the part as a number of simple polygons.
For more demanding needs, exact or Non-Uniform
Rational B-Splines (NURBS) [2] data can also be used,
but at the price of additional computation time.

As mentioned, many EAI customers work with extremely
large models containing perhaps hundreds of thousands of
parts. Some early pruning can be employed to eliminate
parts which clearly are not of interest (e.g., parts on
opposite sides of a very large model may be obviously far
enough apart to obviate the need for a more precise
calculation). However, it still may be necessary to
perform literally billions of clearance computations. Even
on relatively fast workstations, the entire process can take
days to complete.

THE SOLUTION
It is extremely inconvenient for customers to wait days for
important interference/clearance results. In order to
improve this time, additional processing power must be
brought to bear. Fortunately, the clearance calculations
for individual parts are largely independent, and so it was
felt that processing many part clearances in parallel could
greatly speed the overall procedure.

Although EAI products are conceptually based on
Microsoft's component Object Model (COM) [3], EAI

also supports a large number of Unix platforms. A given
customer may be running EAI products on several
different platforms, and it is important that all inter-
operate as seamlessly as possible. In order to address this
need for cross-platform interoperability, we designed a
custom mechanism for distributing clearance work to
available servers. We considered available off-the-shelf
solutions such as Microsoft Transaction Server (MTS) [4]
or IBM's LoadLeveler [5]. Though these commercial
solutions contain many features that our own solution
lacks, they are somewhat bound to specific platforms and
thus unsuitable for our needs.

Essentially, our solution uses standard DCE RPC's to send
jobs (to calculate the clearance of two parts) to a central
server, which we call the Queue Server. The Queue
Server forwards these jobs to a variety of Work Servers
(servers capable of processing the jobs). By using DCE
RPC's, we can assure native operating system support on
virtually all major Unix platforms with the notable
exception of Sun. However, even the Sun platform can be
supported with low cost third-party software. It is
noteworthy that we rely only upon the RPC portion of
DCE, as additional DCE functionality such as the Cell
Directory Service (CDS) cannot be guaranteed to be
available on all platforms [6].

Work Servers register with the Queue Server and then
request jobs from the Queue Server as needed. Since
Work Servers only request an additional job when they
have completed their previous work, fast servers tend to
receive more work than slow servers do. When a Work
Server completes a job, it calls back the Queue Server
with the result and the Queue Server then matches this
result with the appropriate client and forwards the callback
to the client.

On the other side of the communication, clients register
with the Queue Server and send potentially many jobs to
the Queue Server. Clients act as a DCE server by
listening for callbacks that detail the results of a particular
job. The Queue Server has separate threads of execution
to deal with listening for client requests, sending jobs to
Work Servers, listening for results, and returning results to
clients. Since the Queue Server will likely hand out a
given client's job requests to many different servers, the
results come back asynchronously to the client via the
callback interface.

Figure 1 shows the general architecture of this distribution
scheme. The darker arrows depict the call/callback
mechanism used to move clearance requests and results
respectively from clients to the Queue Server to Work
Servers and back through the chain. The lighter arrows
sketch the underlying control mechanisms that are used to
identify Clients and Work Servers to the Queue Server,
thus allowing the Queue Server to manage the overall
communication flow. While the diagram shows the
interaction of one Client with one Queue Server and one
Work Server, the ellipses (…) indicate that in practice
there would certainly by many Work Servers. The
connections between the Queue Server and additional

Work Servers have been omitted for clarity. There also
could be many clients simultaneously operating as well.

Figure 1 contains numbered arrows to indicate the order of
calls in the architecture. This is not strictly accurate in
that the architecture is asynchronous in many respects.
However, these numbers provide a sample scenario that
illustrates a typical interaction. A Client registers with the
Queue Server on its ServerControl interface (1). This
registration call provides information necessary for later
callbacks. The client may then register on the
QueueControl interface (2), which provides special
management information to the Queue Server.

Independently, the Work Server registers with the
QueueControl interface (3) providing information
necessary for the Queue Server to locate it in the future.
The Queue Server responds by registering as a client of
the Work Server on the ServerControl interface (4).

Finally, work proceeds by the Client issuing a custom call
(e.g., a clearance calculation request) to the Queue Server
(5). When appropriate (based on available Work Servers,
load of the Queue Server, etc.), the Queue Server sends
the same custom call to one of the registered Work
Servers (6). When the work has been completed, the
Work Server calls back to the Queue Server with the result
(7) and the Queue Server, in turn, calls back to the Client
with the result (8).

Client

Queue Server

Network Boundary

Network Boundary

Server 1

ServerControl

ServerControl

QueueControl

Custom DCE
Interface (call)

Custom DCE
Interface

Key:

Working DCE call

Housekeeping DCE call

Note: Calls go from a process (box) to an
interface (circle with a line).

Custom DCE
Interface(callb

ack)

Custom DCE
Interface(callb

ack)

. . . Server N

5

7

1

8

6

2

3

4

Figure 1: Distributed Clearance Architecture

PERFORMANCE RESULTS
Table 1 displays a number of timings of the standard (non-
distributed) clearance module and of the distributed
clearance module, which we developed. The first and
fourth lines characterize the old non-distributed
calculation. All other lines were timed using the
distributed clearance module.

Notice that the first three lines of result are concerned with
"local data". Typically, the model data involved in
clearance calculations is stored in a shared file system
(Windows NT File Sharing in our test, but AFS, DFS, and

the like are also common). These first three lines of result
show that copying data to the local file system of the
server dramatically affects performance and the ability of
the system to scale. All other tests were done with the
model data contained on a shared file system.

All test machines involved in the results presented in
Table 1 were 400 MHz Pentium III machines running
either Windows NT or Windows 98. The system was also
tested using an HP/UX machine for proof of concept, but
rigorous timing data were not kept.

Local/Remote Protocol
Count
Servers

Exec.
Time
(secs)

Exec.
Time
per
Server
(secs) Calcs

Calcs
per
sec.

Msecs
per
calc

Improve
ment

Specific
Machines
Used

Server-
reported
Msecs
per calc

RPC
Overhead

Local - Local
Data N/A 1 121.81 121.81 1493 12.26 81.58 0.00% 1 81.58 0.00%
Remote - Local
Data LRPC 1 158.56 158.56 1493 9.42 106.20 -30.17% 1 106.19 0.01%
Remote - Local
Data TCP 5 29.85 5.97 1493 50.01 20.00 75.49% 1,2,3,5,6 18.19 9.95%
Local N/A 1 284.93 284.93 1493 5.24 190.84 0.00% 1 190.84 0.00%
Remote TCP 1 327.88 327.88 1493 4.55 219.61 -15.07% 1 206.23 6.49%
Remote TCP 1 451.30 451.30 1493 3.31 302.28 -58.39% 2 289.74 4.33%
Remote TCP 1 270.11 270.11 1493 5.53 180.92 5.20% 3 157.68 14.74%
Remote TCP 1 429.07 429.07 1493 3.48 287.39 -50.59% 4 274.90 4.54%
Remote TCP 1 297.84 297.84 1493 5.01 199.49 -4.53% 5 187.73 6.26%
Remote TCP 1 295.27 295.27 1493 5.06 197.77 -3.63% 6 186.11 6.27%
Remote TCP 2 272.33 136.17 1493 5.48 182.41 4.42% 3,6 170.62 6.91%
Remote TCP 3 213.37 71.12 1493 7.00 142.91 25.12% 3,5,6 131.39 8.77%
Remote TCP 4 219.12 54.78 1493 6.81 146.76 23.10% 1,3,5,6 134.77 8.90%
Remote TCP 5 219.90 43.98 1493 6.79 147.28 22.82% 1,2,3,5,6 131.11 12.34%

Table 1 : Performance Results

DISCUSSION
Clearly, the results were not tremendously encouraging.
Although there was a fair amount of variance from one
trial to another, it seems clear that a performance "ceiling"
exists at about three servers. In addition, it is quite
troubling that the RPC overhead (the percentage of time
spent in communication rather than actual computation)
seems to grow significantly as the number of servers
increase.

As we looked at these numbers a bit more and did some
ancillary tests, it became apparent that several factors were
responsible for our lackluster performance. First, a
tremendous amount of time is being spent finding and
loading data from the large model files. Our Distributed
Clearance Project actually makes this worse, since a
number of servers may have to search for a given part.
The non-distributed version may find this part once in the
file and utilize the data n-1 times when clearing it against
other parts. This problem is quite similar to cache
coherency problems in multi-processor and cluster
computing environments [7], [8].

Secondly, the local area network on which we conducted
the tests is not sufficient. The network we used is a 10
megabit Ethernet and it is fairly loaded with other
activities at most times. We tried to conduct many of the
tests during off-hours to minimize the effects of other
network traffic. However, timed jobs may have interfered
somewhat with some of the tests. More to the point, we
found that as the number of servers increased and began to
rapidly attempt to access the model files, collisions on the
Ethernet increased dramatically. Thus, as the number of
servers concurrently trying to load part data increases, the
Ethernet collisions effectively put a cap on throughput.
Further evidence of the collision effect is the RPC
overhead, which of course increases as collisions increase.

FUTURE WORK
We are currently working to generalize our job
distribution scheme so it can be used with types of work
besides interference/clearance. We call the generalized
architecture, the Transaction Server Architecture (TSA).
TSA utilizes Microsoft COM principles to allow
pluggable components to abstract away the details of a

specific job type. For example, the Transaction Server
(formerly called the Queue Server) requires a "marshalling
component" for every job type it supports. Thus, it can be
extended to support any new job type, by simply
implementing a new marshalling component.

In addition to generalization, we are of course very
interested in improving performance. In order to maintain
our new found generality, we have added the concept of a
"selection component." A selection component allows a
Transaction Server to choose a job bound for a specific
server from among available jobs. In the base case, this
may be simply taking the first job out of the data structure
(as was done in the old Queue Server). However, in cases
where careful job selection can improve performance,
other algorithms can be incorporated. For example, in the
case of distributed clearance, it should certainly improve
performance to give a server a part that it has worked on
in the recent past (since the part may still be in cache).

We also hope to improve performance through another
modification. As we have shown, the original Distributed
Clearance Project simply distributed each individual
clearance calculation. In TSA, we anticipate the
capability to provide groups of calculations to a given
Work Server. The danger of this approach is that a slow
server may receive a large number of calculations and may
become the bottleneck to the entire computation.
However, we believe in practice this will merely be a
matter of tuning. We could introduce a more complex
scheme to negotiate an appropriate number of transactions
for a given machine based on its capabilities. However, it
is felt that this additional complexity would not be worth
the runtime overhead and design-time programming hours
it would require, considering our purposes.

One could mitigate the need to send transactions involving
a given part to the same Work Server by sending all part
data along with the transaction. This would prevent
multiple Work Servers from repeatedly seeking through
the part database for the same data. However,
performance could still be improved in this case through
the above selection strategy and grouping strategy. In
addition, this scheme does not lend itself well to the use of
current calculation code, and reusing this existing code is
highly desirable.

Although DCE RPC is generally a good choice for
transport, there may be situations in which this protocol is
not ideal. For example, in a business-to-business setting,
DCE RPC is often cited as being problematic since it does
not lend itself well to crossing firewalls. To this end, we
are considering development of a pluggable transport layer
for TSA. Initially, we would implement a component that
simply provides DCE RPC, but additional components for
specific environments could follow (e.g., Simple Object
Access Protocol or "SOAP" [9] for business-to-business
applications).

LESSONS LEARNED
Although some of the lessons learned in the Distributed
Clearance Project are certainly specific to the given

environment, it is felt that some things generalize. The
remainder of this section summarizes the lessons taken
away from Distributed Clearance.

Units of work should be independent in every way if
possible. Although given operations may be functionally
independent, consider their relationships with regard to
performance. In the Distributed Clearance Project, each
of the transactions was independent, or did not rely on
results of the others. However, the fact that a part
involved in one of the transactions could be used
repeatedly greatly improved the performance of the non-
distributed case, while a naïve distribution mechanism
defeated this.

Time to process a unit of work should ideally be several
orders of magnitude greater than the time to send a
request across the network. To truly scale up well, a
distributed application cannot spend a large fraction of its
time sending packets back and forth across the network. If
possible, try to batch up larger chunks of work into a
transaction to lessen the effect of network latency.

Analyze an application's use of the network before
attempting to turn it into a distributed program. The non-
distributed version of the clearance calculation module did
not explicitly use the network. However, its heavy
reliance on shared file system files greatly affected the
performance of the distributed implementation.

CONCLUSION
Distributed computing remains somewhat of an art.
Though advances have been made in frameworks,
compilers, distributed operating systems, etc.,
implementation of a given distributed system still often
requires a great deal of effort. It is still extremely
important to apply careful design, and to test assumptions
in order to achieve good performance, perhaps more so in
distributed computing than in other areas.

Additionally, commodity distributed computing still sits
atop a scare resource: network bandwidth. Although our
test cases were severely limited by the 10-Mb bandwidth
of our Ethernet, even "fast" 100-Mb networks are not
sufficient for many applications. Researchers must
recognize that the gigabit and switched networks in
research labs will remain unreachable for many business
applications for some time to come.

Finally, some applications are good candidates to be
turned into distributed applications and some are not. This
is not always readily apparent. Applications such as SETI
@ Home can afford to wait weeks or months for results as
long as those results eventually arrive, and so distributing
the application's transactions is trivial. For more common
applications where both overall and individual
performance is paramount (such as the Distributed
Clearance Project), the distribution algorithm can be
critical. Careful analysis and testing are required to
determine the potential for breaking a non-distributed
application into parallel units that can be distributed.

ACKNOWLEDGEMENTS
This work was done under a contract for Engineering
Animations, Inc. of Ames, IA. Mr. Ries is also supported
by the National Library of Medicine, grant LM -07089-08.
The authors would like to thank Jerry Spratt of
Engineering Animations, Inc. for his many contributions
to the design of the project, and for his excellent
implementation of the Queue Server.

REFERENCES
[1] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb,

D. Anderson, "A new major SETI project based on
Project Serendip data and 100,000 personal
computers", in Proceedings of the Fith Intl. Conf. on
Bioastronomy, 1997. Also available at:
http://setiathome.berkeley.edu/woody_paper.html.

[2] L. Piegl, W. Tiller, The NURBS Book, Second
Edition, Springer-Verlag, 1996.

[3] Microsoft Corporation, "Component Object Model
Home Page", available at
http://www.microsoft.com/com/default.asp.

[4] Microsoft Corporation, "Microsoft Transaction
Server Home Page", available at
http://www.microsoft.com/com/tech/mts.asp.

[5] IBM Corporation, "Loadleveler Home Page",
October 1998, available at:
http://www.austin.ibm.com/software/sp_product
s/loadlev.html .

[6] J. Ries, "Interconnecting Personal Computers with
the Distributed Computing Environment", University
of Missouri Thesis, 1998.

[7] R. Giorgi, C. A. Prete, "PSCR: A Coherence Protocol
for Eliminating Passive Sharing in Shared-Bus
Shared-Memory Multiprocessors", in IEEE
Transactions on Parallel and Distributed Systems,
Vol. 10, No. 7, July 1999.

[8] M. M. Michael, A. K. Nanda, B. Lim, "Coherence
Controller Architectures for Scalable Shared-
Memory Multiprocessors", in IEEE Transactions on
Computers, Vol. 48, No. 2, February 1999.

[9] D. Box, G. Kakivaya, A. Layman, S. Thatte, D.
Winer, "SOAP: Simple Object Access Protocol",
IETF Internet Draft, November 1999, available
at: http://search.ietf.org/internet-drafts/draft-
box-http-soap-01.txt .

