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ABSTRACT 
Distributed computing promises to break through 
computational performance barriers by cutting large 
problems into small pieces which can be solved by many 
machines acting in concert.  However, not all problems are 
good candidates for this sort of "divide and conquer" 
strategy.  Even large, compute-intensive problems that 
appear easily divisible on the surface may have 
dependencies on data and dependencies across partitioned 
units of work that may prove to negate the advantages 
associated with distributing the workload. 
 
The Distributed Clearance Project demonstrates both the 
potential and the pitfalls of distributed computing.  The 
project seeks to take a very computationally intensive task 
(calculating part clearance tolerances in large 
manufacturing models) and break it into jobs which can be 
performed independently by diverse and geographically 
remote computing resources.  The project relies on 
Distributed Computing Environment (DCE) standard 
Remote Procedure Calls (RPC) as a platform-independent 
transport mechanism, allowing a heterogeneous mix of 
computers to participate. 
 
Though the atomic transactions (part clearance 
calculations) that form the basis for the Distributed 
Clearance Project are essentially independent of each 
other, some of the existing non-distributed code on which 
the project is based contains assumptions regarding 
relationships among these transactions.  Since the project 
was undertaken with a goal of reusing existing non-
distributed code, it was not until initial evaluation of the 
project that these hidden dependencies became apparent. 
In fact, the assumptions made in the non-distributed code 
significantly degrade performance of the distributed 
solution. 
 
This paper compares the performance of a non-distributed 
solution with the performance of the Distributed Clearance 
Project.  We discuss the hidden assumptions which affect 
the Distributed Clearance Project and changes that are 
being made to improve the partitioning of the problem 
space so more nearly optimal distributed performance can 
be achieved.  We also point out "lessons learned" in 

building distributed solutions from existing non-
distributed code. 
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INTRODUCTION 
Many scientific papers which address load balancing or 
distributed computing in general assume that the domain 
of such problems is really supercomputing or high-end 
cluster computing.  This assumption is rapidly becoming 
erroneous.  Distributed computing is moving from high-
end (and high cost) computing into the mainstream.  
Distributed computing is now being employed in industry 
to make computationally intensive problems not only 
tractable, but also economically feasible.  We call 
distributed computing that operates using standard 
workstations, networks, and operating systems, 
"commodity" distributed computing. 
 
The Distributed Clearance Project is an effort by 
Engineering Animations, Inc. (EAI; see www.eai.com) to 
take an existing processor-intensive task, break it into 
independent sub-tasks, and distribute these sub-tasks 
across a generic local area network to a group of 
heterogeneous computers.  EAI's products support a 
variety of Unix flavors as well as Microsoft operating 
systems on the Intel platform.  Like most commercial 
projects, part of the initial goal was to make use of as 
much existing code as possible. 
 
The project was somewhat inspired by the success of the 
SETI @ Home project [1].  As we designed the 
Distributed Clearance Project, it became apparent that our 
project had some essential features in common with SETI 
@ Home that made it a good candidate for a similar sort of 
gross strategy in distributing units of work.  SETI works 
because the units of work performed by each of the 
servers are quite time-intensive.  This characteristic is 
critical in commodity distributed computing because the 
time to make a call or perform a transaction can be 
relatively high as compared to Message Passing Interface 
(MPI) or other schemes typically employed in high 
performance distributed computing environments.  In the 



case of SETI, units of work typically take many hours or 
even days to complete, so the time needed to communicate 
between the client and server is largely irrelevant.  As we 
will show, communication time is somewhat relevant for 
the Distributed Clearance Project. 
 
Another important aspect of SETI is the independence of 
each unit of work.  For SETI, each unit of work is 
completely independent of all others.  Again, this is only 
partially true for Distributed Clearance. 
 
 

THE PROBLEM 
Many of EAI's software products deal with large 
manufacturing data models.  For example, a typical 
customer might be using EAI products to analyze the 
design of a motor vehicle.  One type of analysis that is 
frequently of interest is interference and clearance.  This 
analysis reports parts of a model that overlap or penetrate 
each other (interference) and/or parts that are closer to 
each other than a given tolerance (clearance). 
 
The interference/clearance calculations must be performed 
many times throughout the manufacturer's design process 
as changes occur in specifications, part designs, module 
designs, etc.  In large models, these calculations can be 
extremely time-consuming.  Since each part must be 
"cleared" against every other in the model, approximately 
n2-n calculations may be performed (the -n term comes 
from the diagonal of a matrix since it is plainly 
unnecessary to clear a part against itself). 
 
The individual clearance tests are normally performed on 
"tessellated" renditions of the parts using computational 
geometry methods.  A tessellation is a transformation 
which represents the part as a number of simple polygons.  
For more demanding needs, exact or Non-Uniform 
Rational B-Splines (NURBS) [2] data can also be used, 
but at the price of additional computation time. 
 
As mentioned, many EAI customers work with extremely 
large models containing perhaps hundreds of thousands of 
parts.  Some early pruning can be employed to eliminate 
parts which clearly are not of interest (e.g., parts on 
opposite sides of a very large model may be obviously far 
enough apart to obviate the need for a more precise 
calculation).  However, it still may be necessary to 
perform literally billions of clearance computations.  Even 
on relatively fast workstations, the entire process can take 
days to complete. 
 

THE SOLUTION 
It is extremely inconvenient for customers to wait days for 
important interference/clearance results.  In order to 
improve this time, additional processing power must be 
brought to bear.  Fortunately, the clearance calculations 
for individual parts are largely independent, and so it was 
felt that processing many part clearances in parallel could 
greatly speed the overall procedure. 
 
Although EAI products are conceptually based on 
Microsoft's component Object Model (COM) [3], EAI 

also supports a large number of Unix platforms.  A given 
customer may be running EAI products on several 
different platforms, and it is important that all inter-
operate as seamlessly as possible.  In order to address this 
need for cross-platform interoperability, we designed a 
custom mechanism for distributing clearance work to 
available servers.  We considered available off-the-shelf 
solutions such as Microsoft Transaction Server (MTS) [4] 
or IBM's LoadLeveler [5].  Though these commercial 
solutions contain many features that our own solution 
lacks, they are somewhat bound to specific platforms and 
thus unsuitable for our needs. 
 
Essentially, our solution uses standard DCE RPC's to send 
jobs (to calculate the clearance of two parts) to a central 
server, which we call the Queue Server.  The Queue 
Server forwards these jobs to a variety of Work Servers 
(servers capable of processing the jobs).  By using DCE 
RPC's, we can assure native operating system support on 
virtually all major Unix platforms with the notable 
exception of Sun.  However, even the Sun platform can be 
supported with low cost third-party software.  It is 
noteworthy that we rely only upon the RPC portion of 
DCE, as additional DCE functionality such as the Cell 
Directory Service (CDS) cannot be guaranteed to be 
available on all platforms [6]. 
 
Work Servers register with the Queue Server and then 
request jobs from the Queue Server as needed.  Since 
Work Servers only request an additional job when they 
have completed their previous work, fast servers tend to 
receive more work than slow servers do.  When a Work 
Server completes a job, it calls back the Queue Server 
with the result and the Queue Server then matches this 
result with the appropriate client and forwards the callback 
to the client. 
 
On the other side of the communication, clients register 
with the Queue Server and send potentially many jobs to 
the Queue Server.  Clients act as a DCE server by 
listening for callbacks that detail the results of a particular 
job.  The Queue Server has separate threads of execution 
to deal with listening for client requests, sending jobs to 
Work Servers, listening for results, and returning results to 
clients.  Since the Queue Server will likely hand out a 
given client's job requests to many different servers, the 
results come back asynchronously to the client via the 
callback interface. 
 
Figure 1 shows the general architecture of this distribution 
scheme.  The darker arrows depict the call/callback 
mechanism used to move clearance requests and results 
respectively from clients to the Queue Server to Work 
Servers and back through the chain.  The lighter arrows 
sketch the underlying control mechanisms that are used to 
identify Clients and Work Servers to the Queue Server, 
thus allowing the Queue Server to manage the overall 
communication flow.  While the diagram shows the 
interaction of one Client with one Queue Server and one 
Work Server, the ellipses (…) indicate that in practice 
there would certainly by many Work Servers.  The 
connections between the Queue Server and additional 



Work Servers have been omitted for clarity.  There also 
could be many clients simultaneously operating as well. 
 
Figure 1 contains numbered arrows to indicate the order of 
calls in the architecture.  This is not strictly accurate in 
that the architecture is asynchronous in many respects.  
However, these numbers provide a sample scenario that 
illustrates a typical interaction.  A Client registers with the 
Queue Server on its ServerControl interface (1).  This 
registration call provides information necessary for later 
callbacks.  The client may then register on the 
QueueControl interface (2), which provides special 
management information to the Queue Server. 
 

Independently, the Work Server registers with the 
QueueControl interface (3) providing information 
necessary for the Queue Server to locate it in the future.  
The Queue Server responds by registering as a client of 
the Work Server on the ServerControl interface (4). 
 
Finally, work proceeds by the Client issuing a custom call 
(e.g., a clearance calculation request) to the Queue Server 
(5).  When appropriate (based on available Work Servers, 
load of the Queue Server, etc.), the Queue Server sends 
the same custom call to one of the registered Work 
Servers (6).  When the work has been completed, the 
Work Server calls back to the Queue Server with the result 
(7) and the Queue Server, in turn, calls back to the Client 
with the result (8). 
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Figure 1: Distributed Clearance Architecture 



PERFORMANCE RESULTS 
Table 1 displays a number of timings of the standard (non-
distributed) clearance module and of the distributed 
clearance module, which we developed.  The first and 
fourth lines characterize the old non-distributed 
calculation.  All other lines were timed using the 
distributed clearance module. 
 
Notice that the first three lines of result are concerned with 
"local data".  Typically, the model data involved in 
clearance calculations is stored in a shared file system 
(Windows NT File Sharing in our test, but AFS, DFS, and 

the like are also common).  These first three lines of result 
show that copying data to the local file system of the 
server dramatically affects performance and the ability of 
the system to scale.  All other tests were done with the 
model data contained on a shared file system. 
 
All test machines involved in the results presented in 
Table 1 were 400 MHz Pentium III machines running 
either Windows NT or Windows 98.  The system was also 
tested using an HP/UX machine for proof of concept, but 
rigorous timing data were not kept.  

 
 

Local/Remote Protocol
Count 
Servers

Exec. 
Time 
(secs)

Exec. 
Time 
per 
Server 
(secs) Calcs

Calcs 
per 
sec.

Msecs 
per 
calc

Improve
ment

Specific 
Machines 
Used

Server-
reported 
Msecs 
per calc

RPC 
Overhead

Local - Local 
Data N/A 1 121.81 121.81 1493 12.26 81.58 0.00% 1 81.58 0.00%
Remote - Local 
Data LRPC 1 158.56 158.56 1493 9.42 106.20 -30.17% 1 106.19 0.01%
Remote - Local 
Data TCP 5 29.85 5.97 1493 50.01 20.00 75.49% 1,2,3,5,6 18.19 9.95%
Local N/A 1 284.93 284.93 1493 5.24 190.84 0.00% 1 190.84 0.00%
Remote TCP 1 327.88 327.88 1493 4.55 219.61 -15.07% 1 206.23 6.49%
Remote TCP 1 451.30 451.30 1493 3.31 302.28 -58.39% 2 289.74 4.33%
Remote TCP 1 270.11 270.11 1493 5.53 180.92 5.20% 3 157.68 14.74%
Remote TCP 1 429.07 429.07 1493 3.48 287.39 -50.59% 4 274.90 4.54%
Remote TCP 1 297.84 297.84 1493 5.01 199.49 -4.53% 5 187.73 6.26%
Remote TCP 1 295.27 295.27 1493 5.06 197.77 -3.63% 6 186.11 6.27%
Remote TCP 2 272.33 136.17 1493 5.48 182.41 4.42% 3,6 170.62 6.91%
Remote TCP 3 213.37 71.12 1493 7.00 142.91 25.12% 3,5,6 131.39 8.77%
Remote TCP 4 219.12 54.78 1493 6.81 146.76 23.10% 1,3,5,6 134.77 8.90%
Remote TCP 5 219.90 43.98 1493 6.79 147.28 22.82% 1,2,3,5,6 131.11 12.34%  

Table 1 : Performance Results  

 
 

DISCUSSION 
Clearly, the results were not tremendously encouraging.  
Although there was a fair amount of variance from one 
trial to another, it seems clear that a performance "ceiling" 
exists at about three servers.  In addition, it is quite 
troubling that the RPC overhead (the percentage of time 
spent in communication rather than actual computation) 
seems to grow significantly as the number of servers 
increase. 
 
As we looked at these numbers a bit more and did some 
ancillary tests, it became apparent that several factors were 
responsible for our lackluster performance.  First, a 
tremendous amount of time is being spent finding and 
loading data from the large model files.  Our Distributed 
Clearance Project actually makes this worse, since a 
number of servers may have to search for a given part.  
The non-distributed version may find this part once in the 
file and utilize the data n-1 times when clearing it against 
other parts.  This problem is quite similar to cache 
coherency problems in multi-processor and cluster 
computing environments [7], [8]. 

 
Secondly, the local area network on which we conducted 
the tests is not sufficient.  The network we used is a 10 
megabit Ethernet and it is fairly loaded with other 
activities at most times.  We tried to conduct many of the 
tests during off-hours to minimize the effects of other 
network traffic.  However, timed jobs may have interfered 
somewhat with some of the tests.  More to the point, we 
found that as the number of servers increased and began to 
rapidly attempt to access the model files, collisions on the 
Ethernet increased dramatically.  Thus, as the number of 
servers concurrently trying to load part data increases, the 
Ethernet collisions effectively put a cap on throughput.  
Further evidence of the collision effect is the RPC 
overhead, which of course increases as collisions increase. 
 

FUTURE WORK 
We are currently working to generalize our job 
distribution scheme so it can be used with types of work 
besides interference/clearance.  We call the generalized 
architecture, the Transaction Server Architecture (TSA).  
TSA utilizes Microsoft COM principles to allow 
pluggable components to abstract away the details of a 



specific job type.  For example, the Transaction Server 
(formerly called the Queue Server) requires a "marshalling 
component" for every job type it supports.  Thus, it can be 
extended to support any new job type, by simply 
implementing a new marshalling component. 
 
In addition to generalization, we are of course very 
interested in improving performance.  In order to maintain 
our new found generality, we have added the concept of a 
"selection component."  A selection component allows a 
Transaction Server to choose a job bound for a specific 
server from among available jobs.  In the base case, this 
may be simply taking the first job out of the data structure 
(as was done in the old Queue Server).  However, in cases 
where careful job selection can improve performance, 
other algorithms can be incorporated.  For example, in the 
case of distributed clearance, it should certainly improve 
performance to give a server a part that it has worked on 
in the recent past (since the part may still be in cache). 
 
We also hope to improve performance through another 
modification.  As we have shown, the original Distributed 
Clearance Project simply distributed each individual 
clearance calculation.  In TSA, we anticipate the 
capability to provide groups of calculations to a given 
Work Server.  The danger of this approach is that a slow 
server may receive a large number of calculations and may 
become the bottleneck to the entire computation.  
However, we believe in practice this will merely be a 
matter of tuning.  We could introduce a more complex 
scheme to negotiate an appropriate number of transactions 
for a given machine based on its capabilities.  However, it 
is felt that this additional complexity would not be worth 
the runtime overhead and design-time programming hours 
it would require, considering our purposes. 
 
One could mitigate the need to send transactions involving 
a given part to the same Work Server by sending all part 
data along with the transaction.  This would prevent 
multiple Work Servers from repeatedly seeking through 
the part database for the same data.  However, 
performance could still be improved in this case through 
the above selection strategy and grouping strategy.  In 
addition, this scheme does not lend itself well to the use of 
current calculation code, and reusing this existing code is 
highly desirable. 
 
Although DCE RPC is generally a good choice for 
transport, there may be situations in which this protocol is 
not ideal. For example, in a business-to-business setting, 
DCE RPC is often cited as being problematic since it does 
not lend itself well to crossing firewalls.  To this end, we 
are considering development of a pluggable transport layer 
for TSA.  Initially, we would implement a component that 
simply provides DCE RPC, but additional components for 
specific environments could follow (e.g., Simple Object 
Access Protocol or "SOAP" [9] for business-to-business 
applications). 
 

LESSONS LEARNED 
Although some of the lessons learned in the Distributed 
Clearance Project are certainly specific to the given 

environment, it is felt that some things generalize.  The 
remainder of this section summarizes the lessons taken 
away from Distributed Clearance. 
 
Units of work should be independent in every way if 
possible.  Although given operations may be functionally 
independent, consider their relationships with regard to 
performance.  In the Distributed Clearance Project, each 
of the transactions was independent, or did not rely on 
results of the others.  However, the fact that a part 
involved in one of the transactions could be used 
repeatedly greatly improved the performance of the non-
distributed case, while a naïve distribution mechanism 
defeated this. 
 
Time to process a unit of work should ideally be several 
orders of magnitude greater than the time to send a 
request across the network.  To truly scale up well, a 
distributed application cannot spend a large fraction of its 
time sending packets back and forth across the network.  If 
possible, try to batch up larger chunks of work into a 
transaction to lessen the effect of network latency. 
 
Analyze an application's use of the network before 
attempting to turn it into a distributed program.  The non-
distributed version of the clearance calculation module did 
not explicitly use the network.  However, its heavy 
reliance on shared file system files greatly affected the 
performance of the distributed implementation. 
 

CONCLUSION 
Distributed computing remains somewhat of an art.  
Though advances have been made in frameworks, 
compilers, distributed operating systems, etc., 
implementation of a given distributed system still often 
requires a great deal of effort.  It is still extremely 
important to apply careful design, and to test assumptions 
in order to achieve good performance, perhaps more so in 
distributed computing than in other areas. 
 
Additionally, commodity distributed computing still sits 
atop a scare resource: network bandwidth.  Although our 
test cases were severely limited by the 10-Mb bandwidth 
of our Ethernet, even "fast" 100-Mb networks are not 
sufficient for many applications.  Researchers must 
recognize that the gigabit and switched networks in 
research labs will remain unreachable for many business 
applications for some time to come. 
 
Finally, some applications are good candidates to be 
turned into distributed applications and some are not.  This 
is not always readily apparent.  Applications such as SETI 
@ Home can afford to wait weeks or months for results as 
long as those results eventually arrive, and so distributing 
the application's transactions is trivial.  For more common 
applications where both overall and individual 
performance is paramount (such as the Distributed 
Clearance Project), the distribution algorithm can be 
critical.  Careful analysis and testing are required to 
determine the potential for breaking a non-distributed 
application into parallel units that can be distributed. 
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